Author

Language

Pages

Size

Format

Category

# Piping Calculations Manual

## Contents of Piping Calculations Manual

• Chapter 1. Water Systems Piping
• 1.1 Properties of Water
• 1.1.1 Mass and Weight
• 1.1.2 Density and Specific Weight
• 1.1.3 Specific Gravity
• 1.1.4 Viscosity
• 1.2 Pressure
• 1.3 Velocity
• 1.4 Reynolds Number
• 1.5 Types of Flow
• 1.6 Pressure Drop Due to Friction
• 1.6.1 Bernoulli’s Equation
• 1.6.2 Darcy Equation
• 1.6.3 Colebrook-White Equation
• 1.6.4 Moody Diagram
• 1.6.5 Hazen-Williams Equation
• 1.6.6 Manning Equation
• 1.7 Minor Losses
• 1.7.1 Valves and Fittings
• 1.7.2 Pipe Enlargement and Reduction
• 1.7.3 Pipe Entrance and Exit Losses
• 1.8 Complex Piping Systems
• 1.8.1 Series Piping
• 1.8.2 Parallel Piping
• 1.9 Total Pressure Required
• 1.9.1 Effect of Elevation
• 1.9.2 Tight Line Operation
• 1.9.3 Slack Line Flow
• 1.11 Gravity Flow
• 1.12 Pumping Horsepower
• 1.13 Pumps
• 1.13.1 Positive Displacement Pumps
• 1.13.2 Centrifugal Pumps
• 1.13.3 Pumps in Series and Parallel
• 1.13.5 Pump Curve versus System Head Curve
• 1.14 Flow Injections and Deliveries
• 1.15 Valves and Fittings
• 1.16 Pipe Stress Analysis
• 1.17 Pipeline Economics
• Chapter 2. Fire Protection Piping Systems
• 2.1 Fire Protection Codes and Standards
• 2.2 Types of Fire Protection Piping
• 2.2.1 Belowground Piping
• 2.2.2 Aboveground Piping
• 2.2.3 Hydrants and Sprinklers
• 2.3 Design of Piping System
• 2.3.1 Pressure
• 2.3.2 Velocity
• 2.4 Pressure Drop Due to Friction
• 2.4.1 Reynolds Number
• 2.4.2 Types of Flow
• 2.4.3 Darcy-Weisbach Equation
• 2.4.4 Moody Diagram
• 2.4.5 Hazen-Williams Equation
• 2.4.6 Friction Loss Tables
• 2.4.7 Losses in Valves and Fittings
• 2.4.8 Complex Piping Systems
• 2.5 Pipe Materials
• 2.6 Pumps
• 2.6.1 Centrifugal Pumps
• 2.6.2 Net Positive Suction Head
• 2.6.4 Pump Curve versus System Head Curve
• 2.7 Sprinkler System Design
• Chapter 3. Wastewater and Stormwater Piping
• 3.1 Properties of Wastewater and Stormwater
• 3.1.1 Mass and Weight
• 3.1.2 Density and Specific Weight
• 3.1.3 Volume
• 3.1.4 Specific Gravity
• 3.1.5 Viscosity
• 3.2 Pressure
• 3.3 Velocity
• 3.4 Reynolds Number
• 3.5 Types of Flow
• 3.6 Pressure Drop Due to Friction
• 3.6.1 Manning Equation
• 3.6.2 Darcy Equation
• 3.6.3 Colebrook-White Equation
• 3.6.4 Moody Diagram
• 3.6.5 Hazen-Williams Equation
• 3.7 Minor Losses
• 3.7.1 Valves and Fittings
• 3.7.2 Pipe Enlargement and Reduction
• 3.7.3 Pipe Entrance and Exit Losses
• 3.8 Sewer Piping Systems
• 3.9 Sanitary Sewer System Design
• 3.10 Self-Cleansing Velocity
• 3.11 Storm Sewer Design
• 3.11.1 Time of Concentration
• 3.11.2 Runoff Rate
• 3.12 Complex Piping Systems
• 3.12.1 Series Piping
• 3.12.2 Parallel Piping
• 3.13 Total Pressure Required
• 3.13.1 Effect of Elevation
• 3.13.2 Tight Line Operation
• 3.13.3 Slack Line Flow
• 3.15 Gravity Flow
• 3.16 Pumping Horsepower
• 3.17 Pumps
• 3.17.1 Positive Displacement Pumps
• 3.17.2 Centrifugal Pumps
• 3.18 Pipe Materials
• 3.19 Loads on Sewer Pipe
• Chapter 4. Steam Systems Piping
• 4.1 Codes and Standards
• 4.2 Types of Steam Systems Piping
• 4.3 Properties of Steam
• 4.3.1 Enthalpy
• 4.3.2 Specific Heat
• 4.3.3 Pressure
• 4.3.4 Steam Tables
• 4.3.5 Superheated Steam
• 4.3.6 Volume
• 4.3.7 Viscosity
• 4.4 Pipe Materials
• 4.5 Velocity of Steam Flow in Pipes
• 4.6 Pressure Drop
• 4.6.1 Darcy Equation for Pressure Drop
• 4.6.2 Colebrook-White Equation
• 4.6.3 Unwin Formula
• 4.6.4 Babcock Formula
• 4.6.5 Fritzche’s Equation
• 4.7 Nozzles and Orifices
• 4.8 Pipe Wall Thickness
• 4.9 Determining Pipe Size
• 4.10 Valves and Fittings
• 4.10.1 Minor Losses
• 4.10.2 Pipe Enlargement and Reduction
• 4.10.3 Pipe Entrance and Exit Losses
• Chapter 5. Compressed-Air Systems Piping
• 5.1 Properties of Air
• 5.1.1 Relative Humidity
• 5.1.2 Humidity Ratio
• 5.2 Fans, Blowers, and Compressors
• 5.3 Flow of Compressed Air
• 5.3.1 Free Air, Standard Air, and Actual Air
• 5.3.2 Isothermal Flow
• 5.3.4 Isentropic Flow
• 5.4 Pressure Drop in Piping
• 5.4.1 Darcy Equation
• 5.4.2 Churchill Equation
• 5.4.3 Swamee-Jain Equation
• 5.4.4 Harris Formula
• 5.4.5 Fritzsche Formula
• 5.4.6 Unwin Formula
• 5.4.7 Spitzglass Formula
• 5.4.8 Weymouth Formula
• 5.5 Minor Losses
• 5.6 Flow of Air through Nozzles
• 5.6.1 Flow through a Restriction
• Chapter 6. Oil Systems Piping
• 6.4 Viscosity
• 6.4 Viscosity of Blended Products
• 6.5 Bulk Modulus
• 6.6 Vapor Pressure
• 6.7 Pressure
• 6.8 Velocity
• 6.9 Reynolds Number
• 6.10 Types of Flow
• 6.11 Pressure Drop Due to Friction
• 6.11.1 Bernoulli’s Equation
• 6.11.2 Darcy Equation
• 6.11.3 Colebrook-White Equation
• 6.11.4 Moody Diagram
• 6.11.5 Hazen-Williams Equation
• 6.11.6 Miller Equation
• 6.11.7 Shell-MIT Equation
• 6.11.8 Other Pressure Drop Equations
• 6.12 Minor Losses
• 6.12.1 Valves and Fittings
• 6.12.2 Pipe Enlargement and Reduction
• 6.12.3 Pipe Entrance and Exit Losses
• 6.13 Complex Piping Systems
• 6.13.1 Series Piping
• 6.13.2 Parallel Piping
• 6.14 Total Pressure Required
• 6.14.1 Effect of Elevation
• 6.14.2 Tight Line Operation
• 6.16 Pumping Horsepower
• 6.17 Pumps
• 6.17.1 Positive Displacement Pumps
• 6.17.2 Centrifugal Pumps
• 6.17.3 Net Positive Suction Head
• 6.17.4 Specific Speed
• 6.17.5 Effect of Viscosity and Gravity on Pump Performance
• 6.18 Valves and Fittings
• 6.19 Pipe Stress Analysis
• 6.20 Pipeline Economics
• Chapter 7. Gas Systems Piping
• 7.1 Gas Properties
• 7.1.1 Mass
• 7.1.2 Volume
• 7.1.3 Density
• 7.1.4 Specific Gravity
• 7.1.5 Viscosity
• 7.1.6 Ideal Gases
• 7.1.7 Real Gases
• 7.1.8 Natural Gas Mixtures
• 7.1.9 Compressibility Factor
• 7.1.10 Heating Value
• 7.1.11 Calculating Properties of Gas Mixtures
• 7.2 Pressure Drop Due to Friction
• 7.2.1 Velocity
• 7.2.2 Reynolds Number
• 7.2.3 Pressure Drop Equations
• 7.2.4 Transmission Factor and Friction Factor
• 7.3 Line Pack in Gas Pipeline
• 7.4 Pipes in Series
• 7.5 Pipes in Parallel
• 7.6 Looping Pipelines
• 7.7 Gas Compressors
• 7.7.1 Isothermal Compression
• 7.7.3 Discharge Temperature of Compressed Gas
• 7.7.4 Compressor Horsepower
• 7.8 Pipe Stress Analysis
• 7.9 Pipeline Economics
• Chapter 8. Fuel Gas Distribution Piping Systems
• 8.1 Codes and Standards
• 8.2 Types of Fuel Gas
• 8.3 Gas Properties
• 8.4 Fuel Gas System Pressures
• 8.5 Fuel Gas System Components
• 8.6 Fuel Gas Pipe Sizing
• 8.7 Pipe Materials
• 8.8 Pressure Testing
• 8.9 LPG Transportation
• 8.9.1 Velocity
• 8.9.2 Reynolds Number
• 8.9.3 Types of Flow
• 8.9.4 Pressure Drop Due to Friction
• 8.9.5 Darcy Equation
• 8.9.6 Colebrook-White Equation
• 8.9.7 Moody Diagram
• 8.9.8 Minor Losses
• 8.9.9 Valves and Fittings
• 8.9.10 Pipe Enlargement and Reduction
• 8.9.11 Pipe Entrance and Exit Losses
• 8.9.12 Total Pressure Required
• 8.9.13 Effect of Elevation
• 8.9.14 Pump Stations Required
• 8.9.15 Tight Line Operation
• 8.9.17 Pumping Horsepower
• 8.10 LPG Storage
• 8.11 LPG Tank and Pipe Sizing
• Chapter 9. Cryogenic and Refrigeration Systems Piping
• 9.1 Codes and Standards
• 9.2 Cryogenic Fluids and Refrigerants
• 9.3 Pressure Drop and Pipe Sizing
• 9.3.1 Single-Phase Liquid Flow
• 9.3.2 Single-Phase Gas Flow
• 9.3.3 Two-Phase Flow
• 9.3.4 Refrigeration Piping
• 9.4 Piping Materials
• Chapter 10. Slurry and Sludge Systems Piping
• 10.1 Physical Properties
• 10.2 Newtonian and Nonnewtonian Fluids
• 10.2.1 Bingham Plastic Fluids
• 10.2.2 Pseudo-Plastic Fluids
• 10.2.3 Yield Pseudo-Plastic Fluids
• 10.3 Flow of Newtonian Fluids
• 10.4 Flow of Nonnewtonian Fluids
• 10.4.1 Laminar Flow of Nonnewtonian Fluids
• 10.4.2 Turbulent Flow of Nonnewtonian Fluids
• 10.5 Homogenous and Heterogeneous Flow
• 10.5.1 Homogenous Flow
• 10.5.2 Heterogeneous Flow
• 10.6 Pressure Loss in Slurry Pipelines with Heterogeneous Flow

Share PDF on your social media:

## Related Books

### Piping and Pipeline Calculations Manual 2nd Edition

What's the problem with this file?